Effect of Housing on Portfolio Choice: House Price Risk and Liquidity Constraint

Seungyub Han

April 26, 2023

University of California, Los Angeles

Outline

1. Introduction

2. Jeonse Contract and Liquidity Constraint Channel

3. Model

4. Optimal Policies

5. Empirical Analysis

6. Conclusion

Introduction

Motivation

- It is known that housing crowds out stock holdings of households.
- Two main channels are discussed in the literature. (Cocco (2005), Yao and Zhang (2005))
- Liquidity Constraint Channel & House Price Risk Channel
- Studying these two channels separately was impossible as households get exposed to these channels simultaneously once they purchase houses.
- → **Contribution:** By exploiting unique housing tenure type called *Jeonse* only affected via *liquidity constraint channel*, I study each channel's influence separately both through the model and the data.

Liquidity Constraint Channel

1. Liquidity Constraint Channel

- Purchase a house \rightarrow no money left to invest.
- Households need to have a certain portion of their asset in the form of illiquid housing asset. (Boar, Gorea and Midrigan 2022)
- The young are considered to be more liquidity constrained than the old because young people have most of their life time wealth in the form of illiquid future labor income.
- In this sense, for a household who has future periods to live, <u>Net Wealth</u> can be used to measure the liquidity constraints.
- \rightarrow Housing put a additional liquidity constraint on it
- \rightarrow Crowding out effect will be heterogeneous across households with different $\frac{Net Wealth}{Income}$ and Age.

2. House Price Risk Channel

- Housing return is stochastic, which has two impacts on household stock investment.
- (1) Once households buy houses, their total portfolios become riskier as they are exposed to net wealth fluctuation due to house price changes.
- (2) If the stock return and housing return are negatively correlated or have low correlation, having both may decrease the total variation of their total portfolio
- → Through (1), housing leads households to decrease the stock investment while (2) may lead households to increase/decrease the stock investment depending on the correlation structure.

- Complete Market Life-Cycle Portfolio Choice Model
- Merton (1969)
- Durable Consumption Good
- Grossman and Laroque (1990)
- Exogenous Housing Position
- Flavin and Yamashita (2002), Faig and Shum (2002)
- Life-Cycle Portfolio Choice Model with Endogenous Housing Choices
- Cocco (2005), Yao and Zhang (2005), Vestman (2019)

Jeonse Contract and Liquidity Constraint Channel

• How Jeonse contract is made

- (1) Jeonse tenant and landlord decide
 - Size of Jeonse deposit (60-70% HP)
 - Contract period (2 Years)
- (2) Jeonse Tenant gives Jeonse Deposit to the landlord
- (3) Jeonse Tenant lives in the house while paying no rents
- (4) Jeonse Tenant receives Jeonse Deposit back from the landlord
- $\rightarrow\,$ Tenant receives back exactly the same amount of deposit they paid at the beginning.

Housing Tenure Distribution in Korea and US

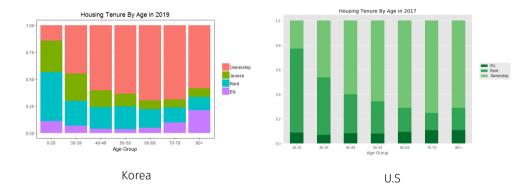


Fig.1. Tenure Distribution of Korea and US¹

¹(Kor) Survey of Household Finances and Living Conditions 2019 & (US) SCF 2017

Jeonse Contract and Liquidity Constraint Channel

1. Jeonse deposit value does not change

- No House Price Risk Channel
- cf) Default of landlords?
 - : Jeonse deposit insurance by HUG
 - : Landlord Default Cases 23 (2016), 258 (2018) according to HUG
 - : Yearly Average Number of Jeonse contract in Seoul \sim 100,000

Jeonse Contract and Liquidity Constraint Channel

1. Jeonse deposit value does not change

- No House Price Risk Channel
- cf) Default of landlords?
 - : Jeonse deposit insurance by HUG
 - : Landlord Default Cases 23 (2016), 258 (2018) according to HUG
 - : Yearly Average Number of Jeonse contract in Seoul \sim 100,000
 - 2. Jeonse Downpayment = N Years HH Income
 - Yes Liquidity Constraint Channel
- cf) How burdensome is the Jeonse deposit? (* Size of Jeonse Deposit)
- cf) Why do people use Jeonse contract? Tenure Choice

Jeonse Contract and Liquidity Constraint Channel

- Comparing **renters'** portfolio choices and **Jeonse tenants'** portfolio choices gives us some lessons regarding **how** *Liquidity Constraint Channel* **works**
- Comparing *Jeonse* tenants' portfolio choices and homeowners' portfolio choices gives us some lessons regarding what the additional components from *House Price Risk Channel* are
- \rightarrow Study how Jeonse tenants invest in a stock market compared to renters or homeowners through the life-cycle portfolio choice model and household survey data.

- (1) Jeonse tenureship does seem to crowd out households' stockholdings.
- $\rightarrow~$ Liquidity constraint channel exsits.
- (2) The crowding-out effect from *Jeonse* tenureship does decrease and go away if households get enough liquidity in their hands or households get older.
- $\rightarrow\,$ Liquidity constraint channel seems go away once households are not liquidity constrained anymore.
- (3) The crowding-out effect from homeownership seems larger than that of *Jeonse* tenureship and it persists though households get less liquidity constrained.
- $\rightarrow\,$ Larger liquidity constraint channel + house price risk channel.
- (4) Model predicts the higher risky financial asset ratio over financial asset for homeowners and *Jeonse* tenants. Data does not seem like that.
- $\rightarrow\,$ Role of participation costs and return correlation structures.

Model

- Life-Cycle Environment
- Live 30-100 / Retire at 60 / One period = 2 years / Age = a

• Life-Cycle Environment

- Live 30-100 / Retire at 60 / One period = 2 years / Age = a

• Choice variables

- Housing tenures (Rent, Jeonse, Homeownership)
- Housing expenditure $(\tau P_a^H H_a, (\delta^J + \phi_J) \overline{J} P_a^H H_a, (\delta + \phi) P_a^H H_a)$
- Consumption (C_a), Saving decision (A_a)
- Stock Market Participation, Portfolio choice (α_a)

• Life-Cycle Environment

- Live 30-100 / Retire at 60 / One period = 2 years / Age = a

• Choice variables

- Housing tenures (Rent, Jeonse, Homeownership)
- Housing expenditure $(\tau P_a^H H_a, (\delta^J + \phi_J) \overline{J} P_a^H H_a, (\delta + \phi) P_a^H H_a)$
- Consumption (C_a), Saving decision (A_a)
- Stock Market Participation, Portfolio choice (α_a)
- State variables
- Cash-in-hand (X_a) , Labor Income (Y_a) , House Price (P_a^H) , Owned House Quality (H_a)

• Life-Cycle Environment

- Live 30-100 / Retire at 60 / One period = 2 years / Age = a

• Choice variables

- Housing tenures (Rent, Jeonse, Homeownership)
- Housing expenditure $(\tau P_a^H H_a, (\delta^J + \phi_J) \overline{J} P_a^H H_a, (\delta + \phi) P_a^H H_a)$
- Consumption (C_a), Saving decision (A_a)
- Stock Market Participation, Portfolio choice (α_a)
- State variables
- Cash-in-hand (X_a) , Labor Income (Y_a) , House Price (P_a^H) , Owned House Quality (H_a)
- Exogenous Processes
- Labor Income, House Price, Stock Return may be correlated

• Labor Income Process

-
$$y_a = log(Y_a) = g_a + z_{i,a}, a \le 15$$
 where $z_{i,a} = z_{i,a-1} + v_{i,a}, a \le 15$

-
$$y_a = log(\lambda) + g_{15} + z_{i,15}, \ a > 15$$

-
$$R_{a+1}^{Y} = \frac{Y_{a+1}}{Y_a} = exp(g_{a+1} - g_a + v_{i,a+1})$$

• Labor Income Process

-
$$y_a = log(Y_a) = g_a + z_{i,a}, \ a \le 15$$
 where $z_{i,a} = z_{i,a-1} + v_{i,a}, \ a \le 15$

-
$$y_a = log(\lambda) + g_{15} + z_{i,15}, \ a > 15$$

-
$$R_{a+1}^{Y} = \frac{Y_{a+1}}{Y_a} = exp(g_{a+1} - g_a + v_{i,a+1})$$

• Stock Return Process

-
$$R_{a+1} = exp(log(R_f) + \mu + \epsilon_{a+1})$$

• Labor Income Process

-
$$y_a = log(Y_a) = g_a + z_{i,a}, a \le 15$$
 where $z_{i,a} = z_{i,a-1} + v_{i,a}, a \le 15$

-
$$y_a = log(\lambda) + g_{15} + z_{i,15}, \ a > 15$$

-
$$R_{a+1}^{Y} = \frac{Y_{a+1}}{Y_a} = exp(g_{a+1} - g_a + v_{i,a+1})$$

- Stock Return Process
- $R_{a+1} = exp(log(R_f) + \mu + \epsilon_{a+1})$
- Housing Return Process
- $R_{a+1}^{H} = exp(\mu_{H} + n_{a+1})$

• Labor Income Process

-
$$y_a = log(Y_a) = g_a + z_{i,a}, \ a \le 15$$
 where $z_{i,a} = z_{i,a-1} + v_{i,a}, \ a \le 15$

-
$$y_a = log(\lambda) + g_{15} + z_{i,15}, \ a > 15$$

-
$$R_{a+1}^{Y} = \frac{Y_{a+1}}{Y_a} = exp(g_{a+1} - g_a + v_{i,a+1})$$

- Stock Return Process
- $R_{a+1} = exp(log(R_f) + \mu + \epsilon_{a+1})$
- Housing Return Process
- $R_{a+1}^{H} = exp(\mu_{H} + n_{a+1})$
- \rightarrow Return processes can be correlated (i.e. $v_{i,a}$, n_a , ϵ_a may be correlated)

Structure of Bellman Equations

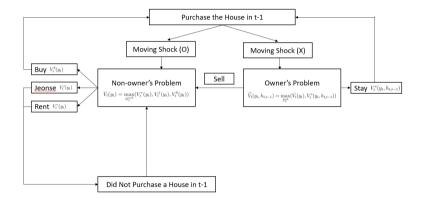


Fig2. Bellman Equation Structure

(1) If households don't have houses, they solve the non-owner's problem $\rightarrow \bar{V}_a(X_a, Y_a, P_a^H) = \max(V_a^r(X_a, Y_a, P_a^H), V_a^j(X_a, Y_a, P_a^H), V_a^b(X_a, Y_a, P_a^H))$ (1) If households don't have houses, they solve the non-owner's problem $\rightarrow V_a(X_a, Y_a, P_a^H) = \max(V_a^r(X_a, Y_a, P_a^H), V_a^j(X_a, Y_a, P_a^H), V_a^b(X_a, Y_a, P_a^H))$ (2) If households have houses (H_{a-1}) , they solve the owner's problem. $\rightarrow V_a(X_a, H_{a-1}, Y_a, P_a^H) = \max(V_a(X_a, Y_a, P_a^H), V_a^s(X_a, H_{a-1}, Y_a, P_a^H))$ By choosing one of the housing tenures, they arrive at the one of four problems defining four value functions below.

- V_a^r is renter's value function
- V_a^{j} is Jeonse tenant's value function
- V_a^b is new home purchaser's value function
- V_a^s is stayer's value function

Then, they solve the second stage problem which is specific for each tenure choice.

$$V_{a}^{r}(X_{a}, Y_{a}, P_{a}^{H}) = \max_{C_{a}, A_{a}, \alpha_{a}} \frac{(C_{a}^{1-\omega}H_{a}^{\omega})^{(1-\sigma)}}{1-\sigma} + \beta E_{a}[(1-\pi_{a})\overline{V}_{a+1} + \pi_{a}\alpha_{3}(\frac{X_{a+1}}{(P_{a}^{H})^{\omega}})^{1-\sigma}]$$
s.t $X_{a} \ge A_{a} + C_{a} + \tau P_{a}^{H}H_{a} + 1[\alpha_{a} > 0]\gamma Y_{a}$
 $X_{a+1} = A_{a}R_{f} + \alpha_{a}A_{a}(R_{a+1} - R_{f}) + Y_{a+1}$
 $\alpha_{a} \in [0, 1], A_{a} \ge 0, C_{a} \ge 0, H_{a} \ge 0$

$$V_{a}^{r}(X_{a}, Y_{a}, P_{a}^{H}) = \max_{C_{a}, A_{a}, \alpha_{a}} \frac{(C_{a}^{1-\omega}H_{a}^{\omega})^{(1-\sigma)}}{1-\sigma} + \beta E_{a}[(1-\pi_{a})\overline{V}_{a+1} + \pi_{a}\alpha_{3}(\frac{X_{a+1}}{(P_{a}^{H})^{\omega}})^{1-\sigma}]$$
s.t $X_{a} \ge A_{a} + C_{a} + \tau P_{a}^{H}H_{a} + 1[\alpha_{a} > 0]\gamma Y_{a}$
 $X_{a+1} = A_{a}R_{f} + \alpha_{a}A_{a}(R_{a+1} - R_{f}) + Y_{a+1}$
 $\alpha_{a} \in [0, 1], A_{a} \ge 0, C_{a} \ge 0, H_{a} \ge 0$

$$V_{a}^{r}(X_{a}, Y_{a}, P_{a}^{H}) = \max_{C_{a}, A_{a}, \alpha_{a}} \frac{(C_{a}^{1-\omega}H_{a}^{\omega})^{(1-\sigma)}}{1-\sigma} + \beta E_{a}[(1-\pi_{a})\overline{V}_{a+1} + \pi_{a}\alpha_{3}(\frac{X_{a+1}}{(P_{a}^{H})^{\omega}})^{1-\sigma}]$$
s.t $X_{a} \ge A_{a} + C_{a} + \tau P_{a}^{H}H_{a} + 1[\alpha_{a} > 0]\gamma Y_{a}$
 $X_{a+1} = A_{a}R_{f} + \alpha_{a}A_{a}(R_{a+1} - R_{f}) + Y_{a+1}$
 $\alpha_{a} \in [0, 1], A_{a} \ge 0, C_{a} \ge 0, H_{a} \ge 0$

$$V_{a}^{r}(X_{a}, Y_{a}, P_{a}^{H}) = \max_{C_{a}, A_{a}, \alpha_{a}} \frac{(C_{a}^{1-\omega}H_{a}^{\omega})^{(1-\sigma)}}{1-\sigma} + \beta E_{a}[(1-\pi_{a})\bar{V}_{a+1} + \pi_{a}\alpha_{3}(\frac{X_{a+1}}{(P_{a}^{H})^{\omega}})^{1-\sigma}]$$
s.t $X_{a} \ge A_{a} + C_{a} + \tau P_{a}^{H}H_{a} + 1[\alpha_{a} > 0]\gamma Y_{a}$
 $X_{a+1} = A_{a}R_{f} + \alpha_{a}A_{a}(R_{a+1} - R_{f}) + Y_{a+1}$
 $\alpha_{a} \in [0, 1], A_{a} \ge 0, C_{a} \ge 0, H_{a} \ge 0$

$$V_{a}^{r}(X_{a}, Y_{a}, P_{a}^{H}) = \max_{C_{a}, A_{a}, \alpha_{a}} \frac{(C_{a}^{1-\omega}H_{a}^{\omega})^{(1-\sigma)}}{1-\sigma} + \beta E_{a}[(1-\pi_{a})\bar{V}_{a+1} + \pi_{a}\alpha_{3}(\frac{X_{a+1}}{(P_{a}^{H})^{\omega}})^{1-\sigma}]$$
s.t $X_{a} \ge A_{a} + C_{a} + \tau P_{a}^{H}H_{a} + 1[\alpha_{a} > 0]\gamma Y_{a}$
 $X_{a+1} = A_{a}R_{f} + \alpha_{a}A_{a}(R_{a+1} - R_{f}) + Y_{a+1}$
 $\alpha_{A} \in [0, 1], A_{a} \ge 0, C_{a} \ge 0, H_{a} \ge 0$

$$V_{a}^{r}(X_{a}, Y_{a}, P_{a}^{H}) = \max_{C_{a}, A_{a}, \alpha_{a}} \frac{(C_{a}^{1-\omega}H_{a}^{\omega})^{(1-\sigma)}}{1-\sigma} + \beta E_{a}[(1-\pi_{a})\bar{V}_{a+1} + \pi_{a}\alpha_{3}(\frac{X_{a+1}}{(P_{a}^{H})^{\omega}})^{1-\sigma}]$$
s.t $X_{a} \ge A_{a} + C_{a} + \tau P_{a}^{H}H_{a} + 1[\alpha_{a} > 0]\gamma Y_{a}$
 $X_{a+1} = A_{a}R_{f} + \alpha_{a}A_{a}(R_{a+1} - R_{f}) + Y_{a+1}$
 $\alpha_{A} \in [0, 1], A_{a} \ge 0, C_{a} \ge 0, H_{a} \ge 0$

$$V_{a}^{j}(X_{a}, Y_{a}, P_{a}^{H}) = \max_{C_{a}, A_{a}, H_{a}, \alpha_{a}} \frac{(C_{a}^{1-\omega}H_{a}^{\omega})^{(1-\sigma)}}{1-\sigma} + \beta E_{a}[(1-\pi_{a})\bar{V}_{a+1} + \pi_{a}\alpha_{3}(\frac{X_{a+1}}{(P_{a}^{H})^{\omega}})^{1-\sigma}]$$
s.t. $X_{a} \ge A_{a} + C_{a} + (\delta_{J} + \phi_{J})\bar{J}P_{a}^{H}H_{a} + 1[\alpha_{a} > 0]\gamma Y_{a}$
 $X_{a+1} = A_{a}R_{f} + \alpha_{a}A_{a}(R_{a+1} - R_{f}) + Y_{a+1} + P_{a}^{H}H_{a}\bar{J}(1-(1-\delta_{J})R_{M})$
 $\alpha_{a} \in [0, 1], A_{a} \ge 0, C_{a} \ge 0, H_{a} \ge 0, X_{a} \ge \delta_{J}\bar{J}P_{a}^{H}\underline{H}$

- δ^{J} : Down payment ratio for *Jeonse* deposit
- \overline{J} : Size of *Jeonse* deposit to house price
- ϕ_J : *Jeonse* contract fee

$$V_{a}^{j}(X_{a}, Y_{a}, P_{a}^{H}) = \max_{C_{a}, A_{a}, H_{a}, \alpha_{a}} \frac{(C_{a}^{1-\omega}H_{a}^{\omega})^{(1-\sigma)}}{1-\sigma} + \beta E_{a}[(1-\pi_{a})\overline{V}_{a+1} + \pi_{a}\alpha_{3}(\frac{X_{a+1}}{(P_{a}^{H})^{\omega}})^{1-\sigma}]$$

s.t. $X_{a} \ge A_{a} + C_{a} + (\delta_{J} + \phi_{J})\overline{J}P_{a}^{H}H_{a} + 1[\alpha_{a} > 0]\gamma Y_{a}$
 $X_{a+1} = A_{a}R_{f} + \alpha_{a}A_{a}(R_{a+1} - R_{f}) + Y_{a+1} + P_{a}^{H}H_{a}\overline{J}(1-(1-\delta_{J})R_{M})$
 $\alpha_{a} \in [0, 1], A_{a} \ge 0, C_{a} \ge 0, H_{a} \ge 0, X_{a} \ge \delta_{J}\overline{J}P_{a}^{H}\underline{H}$

- δ^{J} : Down payment ratio for *Jeonse* deposit
- \overline{J} : Size of *Jeonse* deposit to house price
- ϕ_J : *Jeonse* contract fee

$$V_{a}^{j}(X_{a}, Y_{a}, P_{a}^{H}) = \max_{C_{a}, A_{a}, H_{a}, \alpha_{a}} \frac{(C_{a}^{1-\omega}H_{a}^{\omega})^{(1-\sigma)}}{1-\sigma} + \beta E_{a}[(1-\pi_{a})\bar{V}_{a+1} + \pi_{a}\alpha_{3}(\frac{X_{a+1}}{(P_{a}^{H})^{\omega}})^{1-\sigma}]$$

s.t. $X_{a} \ge A_{a} + C_{a} + (\delta^{J} + \phi_{J})\bar{J}P_{a}^{H}H_{a} + 1[\alpha_{a} > 0]\gamma Y_{a}$
 $X_{a+1} = A_{a}R_{f} + \alpha_{a}A_{a}(R_{a+1} - R_{f}) + Y_{a+1} + P_{a}^{H}H_{a}\bar{J}(1-(1-\delta_{J})R_{M})$
 $\alpha_{a} \in [0, 1], A_{a} \ge 0, C_{a} \ge 0, H_{a} \ge 0, X_{a} \ge \delta_{J}\bar{J}P_{a}^{H}\underline{H}$

- δ^{J} : Down payment ratio for *Jeonse* deposit
- \overline{J} : Size of *Jeonse* deposit to house price
- ϕ_J : *Jeonse* contract fee

$$\begin{aligned} V_{a}^{b}(X_{a}, Y_{a}, P_{a}^{H}) &= \max_{C_{a}, A_{a}, H_{a}, \alpha_{a}} \frac{\left(C_{a}^{1-\omega}H_{a}^{\omega}\right)^{(1-\sigma)}}{1-\sigma} + \beta E_{a}[(1-\pi_{a})(\xi \bar{V}_{a+1} + (1-\xi)\hat{V}_{a+1}) + \pi_{a}\alpha_{3}(\frac{X_{a+1}}{(P_{a}^{H})^{\omega}})^{1-\sigma}] \\ \text{s.t} \qquad X_{a} \geq A_{a} + C_{a} + (\chi + \delta + \phi_{b})P_{a}^{H}H_{a} + 1[\alpha_{a} > 0]\gamma Y_{a} \\ X_{a+1} &= A_{a}R_{f} + \alpha_{a}A_{a}(R_{a+1} - R_{f}) + Y_{a+1} + P_{a}^{H}H_{a}(R_{a+1}^{H}(1-\phi) - (1-\delta)R_{f}) \\ \alpha_{a} \in [0, 1], \ A_{a} \geq 0, \ C_{a} \geq 0, \ H_{a} \geq 0, \ X_{a} \geq \delta P_{a}^{H}\underline{H} \end{aligned}$$

- δ : Down payment ratio for home purchase
- χ : House maintenance cost
- ϕ_b : House purchase contract fee
- ϕ : Selling costs / R_f : Risk free rate / R_M : Mortgage Rate

$$\begin{aligned} V_{a}^{b}(X_{a}, Y_{a}, P_{a}^{H}) &= \max_{C_{a}, A_{a}, H_{a}, \alpha_{a}} \frac{\left(C_{a}^{1-\omega}H_{a}^{\omega}\right)^{(1-\sigma)}}{1-\sigma} + \beta E_{a}[(1-\pi_{a})(\xi \bar{V}_{a+1} + (1-\xi)\hat{V}_{a+1}) + \pi_{a}\alpha_{3}(\frac{X_{a+1}}{(P_{a}^{H})^{\omega}})^{1-\sigma}] \\ \text{s.t} \qquad X_{a} \geq A_{a} + C_{a} + (\chi + \delta + \phi_{b})P_{a}^{H}H_{a} + 1[\alpha_{a} > 0]\gamma Y_{a} \\ X_{a+1} &= A_{a}R_{f} + \alpha_{a}A_{a}(R_{a+1} - R_{f}) + Y_{a+1} + P_{a}^{H}H_{a}(R_{a+1}^{H}(1-\phi) - (1-\delta)R_{f}) \\ \alpha_{a} \in [0, 1], \ A_{a} \geq 0, \ C_{a} \geq 0, \ H_{a} \geq 0, \ X_{a} \geq \delta P_{a}^{H}\underline{H} \end{aligned}$$

- δ : Down payment ratio for home purchase
- χ : House maintenance cost
- ϕ_b : House purchase contract fee
- ϕ : Selling costs / R_{f} : Risk free rate / R_{M} : Mortgage Rate

$$V_{a}^{b}(X_{a}, Y_{a}, P_{a}^{H}) = \max_{C_{a}, A_{a}, H_{a}, \alpha_{a}} \frac{(C_{a}^{1-\omega}H_{a}^{\omega})^{(1-\sigma)}}{1-\sigma} + \beta E_{a}[(1-\pi_{a})(\xi \bar{V}_{a+1} + (1-\xi)\hat{V}_{a+1}) + \pi_{a}\alpha_{3}(\frac{X_{a+1}}{(P_{a}^{H})^{\omega}})^{1-\sigma}]$$
s.t $X_{a} \ge A_{a} + C_{a} + (\chi + \delta + \phi_{b})P_{a}^{H}H_{a} + 1[\alpha_{a} > 0]\gamma Y_{a}$
 $X_{a+1} = A_{a}R_{f} + \alpha_{a}A_{a}(R_{a+1} - R_{f}) + Y_{a+1} + P_{a}^{H}H_{a}(R_{a+1}^{H}(1-\phi) - (1-\delta)R_{f})$
 $\alpha_{a} \in [0, 1], A_{a} \ge 0, C_{a} \ge 0, H_{a} \ge 0, X_{a} \ge \delta P_{a}^{H}\underline{H}$

- δ : Down payment ratio for home purchase
- χ : House maintenance cost
- ϕ_b : House purchase contract fee
- ϕ : Selling costs / R_f : Risk free rate / R_M : Mortgage Rate

$$\begin{aligned} V_{a}^{b}(X_{a}, Y_{a}, P_{a}^{H}) &= \max_{C_{a}, A_{a}, H_{a}, \alpha_{a}} \frac{\left(C_{a}^{1-\omega}H_{a}^{\omega}\right)^{(1-\sigma)}}{1-\sigma} + \beta E_{a}[(1-\pi_{a})(\xi \bar{V}_{a+1} + (1-\xi)\hat{V}_{a+1}) + \pi_{a}\alpha_{3}(\frac{X_{a+1}}{(P_{a}^{H})^{\omega}})^{1-\sigma}] \\ \text{s.t} \qquad X_{a} \geq A_{a} + C_{a} + (\chi + \delta + \phi_{b})P_{a}^{H}H_{a} + 1[\alpha_{a} > 0]\gamma Y_{a} \\ X_{a+1} &= A_{a}R_{f} + \alpha_{a}A_{a}(R_{a+1} - R_{f}) + Y_{a+1} + P_{a}^{H}H_{a}(R_{a+1}^{H}(1-\phi) - (1-\delta)R_{f}) \\ \alpha_{a} \in [0, 1], \ A_{a} \geq 0, \ C_{a} \geq 0, \ H_{a} \geq 0, \ X_{a} \geq \delta P_{a}^{H}\underline{H} \end{aligned}$$

- δ : Down payment ratio for home purchase
- χ : House maintenance cost
- ϕ_b : House purchase contract fee
- ϕ : Selling costs / R_{f} : Risk free rate / R_{M} : Mortgage Rate

For the household who decided to stay at the home they purchased, $(H_{a-1} = H_a)$

$$V_{a}^{s}(X_{a}, Y_{a}, P_{a}^{H}, H_{a-1}) = \max_{C_{a}, A_{a}, \alpha_{a}} \frac{(C_{a}^{1-\omega}H_{a-1}^{\omega})^{(1-\sigma)}}{1-\sigma} + \beta E_{a}[(1-\pi_{a})(\xi \bar{V}_{a+1} + (1-\xi)\hat{V}_{a+1}) + \pi_{a}\alpha_{3}(\frac{X_{a+1}}{(P_{a}^{H})^{\omega}})^{1-\sigma}]$$
s.t $X_{a} \ge A_{a} + C_{a} + (\chi + \delta - \phi)P_{a}^{H}H_{a-1} + 1[\alpha_{a} > 0]\gamma Y_{a}$
 $X_{a+1} = A_{a}R_{f} + \alpha_{a}A_{a}(R_{a+1} - R_{f}) + Y_{a+1} + P_{a}^{H}H_{a-1}(R_{a+1}^{H}(1-\phi) - (1-\delta)R_{f})$
 $\alpha_{a} \in [0, 1], A_{a} \ge 0, C_{a} \ge 0$

- δ : Down payment ratio for home purchase
- χ : House maintenance cost
- ϕ_b : House purchase contract fee
- ϕ : Selling costs / R_f : Risk free rate / R_M : Mortgage Rate

For the household who decided to stay at the home they purchased, $(H_{a-1} = H_a)$

$$V_{a}^{s}(X_{a}, Y_{a}, P_{a}^{H}, H_{a-1}) = \max_{C_{a}, A_{a}, \alpha_{a}} \frac{(C_{a}^{1-\omega}H_{a-1}^{\omega})^{(1-\sigma)}}{1-\sigma} + \beta E_{a}[(1-\pi_{a})(\xi \bar{V}_{a+1} + (1-\xi)\hat{V}_{a+1}) + \pi_{a}\alpha_{3}(\frac{X_{a+1}}{(P_{a}^{H})^{\omega}})^{1-\sigma}]$$
s.t $X_{a} \ge A_{a} + C_{a} + (\chi + \delta - \phi)P_{a}^{H}H_{a-1} + 1[\alpha_{a} > 0]\gamma Y_{a}$
 $X_{a+1} = A_{a}R_{f} + \alpha_{a}A_{a}(R_{a+1} - R_{f}) + Y_{a+1} + P_{a}^{H}H_{a-1}(R_{a+1}^{H}(1-\phi) - (1-\delta)R_{f})$
 $\alpha_{a} \in [0, 1], A_{a} \ge 0, C_{a} \ge 0$

- δ : Down payment ratio for home purchase
- χ : House maintenance cost
- ϕ_b : House purchase contract fee
- ϕ : Selling costs / R_f : Risk free rate / R_M : Mortgage Rate

- Normalize the model with $X_a/(P_a^H)^{\omega}$, house price adjusted cash-in-hand.
- Then, I have only one state variable for non-owners and two for owners.
- $x_a = X_a/Y_a$: cash in hand over labor income.
- $h_{a,a-1} = P_a^H H_{a-1} / X_a$: House value over cash in hand.
- For any households with certain age, certain X_a/Y_a , I can see what the optimal housing tenure choice is (Rent, *Jeonse*, Ownership) and what the optimal portfolio choices are

Especially, x_a state variable has a special meaning in my model

- A currently has \$1,000 / is expected to earn \$10,000 in 10 years
- Liquidity constrained household
- $x_a = 1,000/(10,000/10) = 1.$

Especially, x_a state variable has a special meaning in my model

- A currently has \$1,000 / is expected to earn \$10,000 in 10 years
- Liquidity constrained household
- $x_a = 1,000/(10,000/10) = 1.$
- B currently has \$100,000 / is expected to earn \$1,000 in 10 years
- Not liquidity constrained household
- $x_a = 100,000/(1,000/10) = 1,000.$

Especially, x_{α} state variable has a special meaning in my model

- A currently has \$1,000 / is expected to earn \$10,000 in 10 years
- Liquidity constrained household
- $x_a = 1,000/(10,000/10) = 1.$
- B currently has \$100,000 / is expected to earn \$1,000 in 10 years
- Not liquidity constrained household
- $x_a = 100,000/(1,000/10) = 1,000.$
- \rightarrow High $x_a = X_a/Y_a$ means no liquidity constraint
- \rightarrow Low $x_a = X_a/Y_a$ means highly liquidity constrained

Calibrated Parameters 1		Value	Source		
Discount Rate	(β)	0.96 ²	Gomes and Michaelides (2005)		
CRRA Parameter	(σ)	5	Gomes and Michaelides (2005)		
Housing Expenditure	(ω)	0.2	Yao and Zhang (2005)		
Bequest Period	(T_b)	20/2	Yao and Zhang (2005)		
Moving Shock	(ξ)	2*0.04	KLIPS		
Stock Market Participation Cost	(γ)	2*0.0057	Vissing-Jorgensen (2002) & Gomes and Michaelides (2008)		
Rent to House Price Ratio	(τ)	2*0.035	Korea Real Estate Board (2012-2018).		
Jeonse Deposit to House Price Ratio	(J)	0.645	Korea Real Estate Board (2012-2018)		
Down Payment Ratio for Jeonse	(δ_j)	0.416	SHFLC (2012-2018)		
Down Payment Ratio for Home Purchase	(δ)	0.482	SHFLC (2012-2018)		
Jeonse Contract Cost	(ϕ_j)	0.003	Brokerage Fee (Jeonse) (2015)		
House Purchase Cost	(ϕ_b)	0.0165	Acquisition Tax + Brokerage Fee (Purchase/Sell) (2015)		
Selling Cost	(ϕ)	0.004	Brokerage Fee (Purchase/Sell) (2015)		
Maintenance Cost	(χ)	2*0.003	Wealth Tax (2015)		

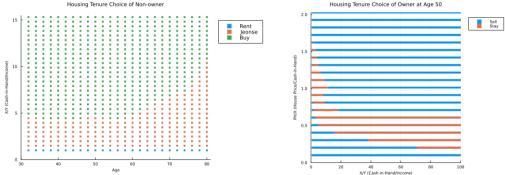
Table1. Calibration 1

Calibrated Parameters 2		Value	Source		
Gross Risk Free Rate		1.023 ²	Bank of Korea ECOS (2012-2018)		
Gross Mortgage Rate		1.047 ² .	Bank of Korea ECOS (2012-2018)		
Expected Log Risk Premium		2*0.012	Bank of Korea ECOS (2004-2018)		
Expected Log Housing Return		2*0.011	Korea Real Estate Board (2004-2018)		
Standard Deviation of Labor Income Shock.		2*0.045	Ahn, Chee and Kim (2021)		
Standard Deviation of Stock Return Shock		2*0.104	Bank of Korea ECOS (2004-2018)		
Standard Deviation of Housing Return Shock		2*0.013	Korea Real Estate Board (2004-2018)		
Correlation between Housing and Stock Return		0.00	Bank of Korea ECOS / Korea Real Estate Board (2012-2018)		
Correlation between Labor Income and Stock Return		0.00	SHFLC / Bank of Korea ECOS(2012-2018)		
Correlation between Housing Return and Labor Income (ho_{hy})		0.00	SHFLC / Korea Real Estate Board (2012-2018)		

Table2. Calibration 2

Optimal Policies

First Stage: Housing Tenure



Housing Tenure Choice of Owner at Age 50

Fig3. Optimal Housing Tenure Policy

- How Net Wealth (NW) is defined
- Renter: A_a
- Jeonse Tenant: $A_a + \delta_J \overline{J} P_H H_a$
- Homeowners: $A_a + \delta P_H H_a$

- How Net Wealth (NW) is defined
- Renter: A_a
- Jeonse Tenant: $A_a + \delta_J \overline{J} P_H H_a$
- Homeowners: $A_a + \delta P_H H_a$
- How Financial Asset and Risky Financial Asset are defined
- Financial Asset = A_a for all tenures
- RiskyFinancial Asset = $\alpha_a A_a$ for all tenures

Second Stage: Definition of Portfolio Choice Variables

- Three Portfolio Choice Variables
- FAR = Financial Asset(FA) Net Wealth (NW)
 Alpha = Risky Financial Asset(RFA) Financial Asset (FA)
 RFAR = Risky Financial Asset(RFA) Net Wealth (NW)

Second Stage: Definition of Portfolio Choice Variables

- Three Portfolio Choice Variables
- FAR = Financial Asset(FA) Net Wealth (NW)
- $Alpha = \frac{Risky Financial Asset(RFA)}{Financial Asset(FA)}$
- $RFAR = \frac{Risky Financial Asset(RFA)}{Net Wealth (NW)}$
- Crowding Out Effect from Jeonse
- FAR_R FAR_J, Alpha_R Alpha_J, RFAR_R RFAR_J
- Crowding Out Effect from Homeowner
- FAR_R FAR_P, Alpha_R Alpha_P, RFAR_R RFAR_P

• True crowding out effect should be studied by imposing different housing tenures to otherwise identical households.

- True crowding out effect should be studied by imposing different housing tenures to otherwise identical households.
- Model allows us to do that.
- $\rightarrow E(PF|_{\overline{Y}}^{X}, Age, Renter(\tau), Z) E(PF|_{\overline{Y}}^{X}, Age, Homeowner(\Phi), Z)$
- $\rightarrow E(PF|_{\overline{Y}}^{X}, Age, Renter(\tau), Z) E(PF|_{\overline{Y}}^{X}, Age, Jeonse(\Phi_{J}), Z)$
- \rightarrow PF \in [FAR, Alpha, RFAR]

Second Stage: Optimal Portfolio Choice over $x_a = X_a/Y_a$ at Age 50

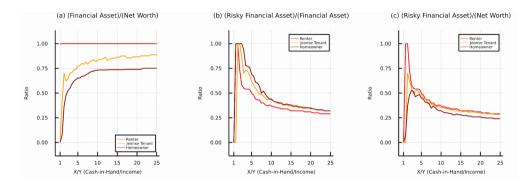


Fig4. Optimal Portfolio Choices (FAR/Alpha/RFAR)

Second Stage: Crowding Out Effect over $x_a = X_a/Y_a$ at Age 50

Fig5. Crowding Out Effect (FAR/Alpha/RFAR)

Second Stage: Optimal Portfolio Choice over Ages at $x_a = 10$

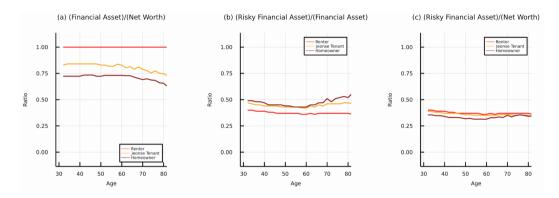


Fig5. Optimal Portfolio Choices (FAR/Alpha/RFAR)

Second Stage: Crowding Out Effect over Ages at $x_a = 10$

Fig6. Crowding Out Effect (FAR/Alpha/RFAR)

Second Stage: *Jeonse* Crowding Out Effect over *x*_a and Ages

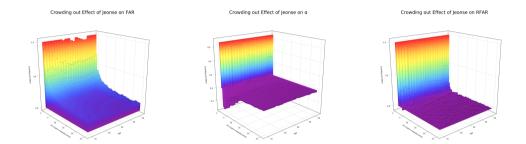


Fig7. Crowding out Effect of Jeonse Tenant

Second Stage: Homeowner Crowding Out Effect over x_a and Ages

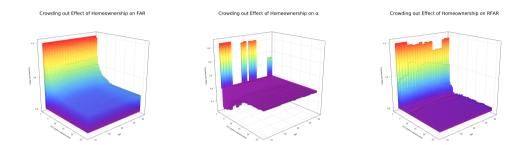


Fig8. Crowding out Effect of Homeowners

Empirical Analysis

- Korean Labor and Income Panel Study (KLIPS)
- Annual panel survey starting from 1998
- Tracking about 5000(98), 6721(09), 12134(18) households representing the entire Korean population
- It has a detailed data on non-durable goods expenditures, housing expenditures, income, wealth, debt, asset allocation, human capital, and household characteristics.

- Financial Assets (FA): Bank deposits, Mutual Funds, Stocks, Bonds, Saving Insurances.
- → **Risky Financial Assets (***RFA***)**: Mutual Funds, Stocks, Bonds.
 - **Real Assets (***RA***)**: Real Estates including the House of Living , Cars, Lands, Any Other Types of Real Assets.
 - Liabilities (*LB*): Any Types of Borrowing from Banks (including Mortgage), Private Borrowings.
 - Net Wealth (*W*) = *FA* + *RA LB*
 - Non-capital Income (Y): Labor Incomes, Pensions, Social Insurances, and Family Transfer Incomes

- Financial Asset Ratio (FAR) = FA/W
- Risky Financial Asset Ratio over Financial Asset (Alpha) = RFA/FA
- Risky Financial Asset Ratio (RFAR) = RFA/W
- **SMP** = 1[*Risky Financial Asset* > 0].

- Sample Selection
- Year: 2009 \sim 2019
- Households who replied more than 4 times
- Households with positive net worth W
- Households with Y larger than \$1,057.45
- Removed top 1 percent and bottom 1 percent of households in terms of $\left(\frac{W}{Y}\right)$
- Removed *Jeonse* tenants and renters who have other housing assets twice larger than their *Jeonse* deposit or rent deposit

Summary Statistics

	Renters	Jeonse Tenants	Homeowner
Fraction of households	0.129	0.228	0.584
Age	45.93	43.59	54.66
Net Wealth (W)	3455.43	13066.38	28364.04
Real Assets (RA)	1903.60	5129.64	29411.29
Financial Assets (FA)	828.52	2143.89	2922.23
Risky Financial Asset (RFA)	137.43	354.83	364.80
Liabilities (LB)	987.38	2816.77	4381.23
Non-capital Income (Y)	3083.27	4303.13	4512.95
Financial Asset Ratio (FAR)	0.2962	0.1897	0.1003
Risky Financial Asset Ratio (RFAR)	0.0087	0.0154	0.0096
Risky Financial Asset Ratio over Financial Assets (Alpha)	0.0181	0.0595	0.0444
Conditional Risky Financial Asset Ratio (c – RFAR)	0.2688	0.1207	0.1083
Conditional Risky Financial Asset Ratio over Financial Assets (c – Alpha)	0.5549	0.4654	0.4960
Stock Market Participation (SMP)	0.0326	0.1279	0.0894
Net Wealth over Income Ratio $\left(\frac{W}{Y}\right)$	1.4705	5.8382	16.8268
House Price	0	0	23483.21
Jeonse Deposit	0	8310.23	0
Rent Deposit	1538.40	0	0

Table3. Summary Statistics ²

²1 means 10,000 Korean won which corresponds to \$8.81 in 2010. I use only 2010 survey to show the data pattern.

Relationship Between Housing Tenures and Portfolio Choices

$$PF_{it} = \beta_J Jeonse_{it} + \beta_0 Owner_{it} + Region_i + Time_t + \epsilon_{it}$$

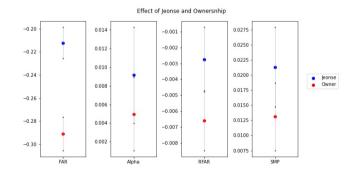


Fig 9. Estimated β_J and β_O

• Main Points

- 1. How do *Jeonse* and homeownership affect the portfolio choice variables *FAR*, *Alpha*, *RFAR*?
- 2. Is the crowding-out effect from homeownership larger than that from Jeonse?
- 3. Do households with high X/Y or older age show smaller crowding-out effect from *Jeonse* while showing persistent the crowding-out effect from homeownership?
- 4. What will be the roles of ρ_{hs}, γ ?

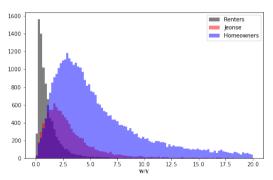
The Crowding-out effect of Jeonse and Homeownership Across W/Y.

$$PF_{it} = \beta U_{it} + \sum_{Q=1}^{8} \gamma_{1Q} Jeonse_{it} [\frac{W}{Y}]_{it}^{Q} + \sum_{Q=1}^{8} \sigma_{1Q} Owner_{it} [\frac{W}{Y}]_{it}^{Q} + \epsilon_{it}$$
$$PF_{it} \in (FAR_{it}, RFAR_{it}, Alpha_{it})$$

- Control variables (*U*_{it})
- Year Fixed Effect and Household Fixed Effect
- $\frac{W}{Y}$, Age
- Education Level, Number of Members in the Household
- Endogeneity Concern

W/Y **Distribution**

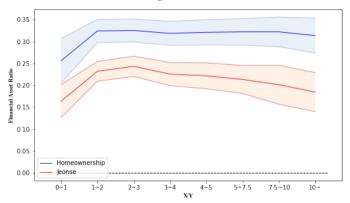
Groups : 0-1/1-2/2-3/3-4/4-5/5-7.5/7.5-10/10-



W/Y Distribution

W/Y Distribution

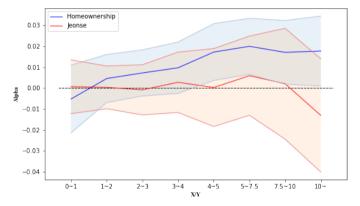
Estimated γ_Q, σ_Q on FAR



Crowding Out Effects - FA

Financial Asset Ratio (FAR) = FA/W

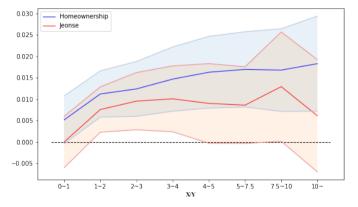
Estimated γ_Q, σ_Q on Alpha



Crowding Out Effects - Alpha

Risky Financial Asset Ratio over Financial Asset (Alpha) = RFA/FA

Estimated γ_Q, σ_Q on RFAR



Crowding Out Effects - RFAR

Risky Financial Asset Ratio (RFAR) = RFA/W

The Crowding-out effect of Jeonse and Homeownership Across Age.

$$PF_{it} = \beta U_{it} + \sum_{Q=1}^{5} \gamma_{1Q} Jeonse_{it} [Age]_{it}^{Q} + \sum_{Q=1}^{5} \sigma_{1Q} Owner_{it} [Age]_{it}^{Q} + \epsilon_{it}$$

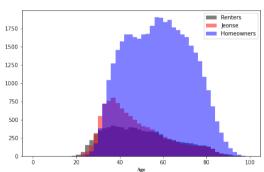
 $PF_{it} \in (FAR_{it}, RFAR_{it}, Alpha_{it})$

- Control variables (*U*_{it})
- Year Fixed Effect and Household Fixed Effect
- $\frac{W}{Y}$, Age
- Education Level, Number of Members in the Household
- Endogeneity concerns

Age Distribution

Groups

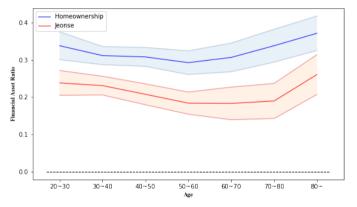
: 0-35/35-50/50-65/65-80/80-



Age Distribution

Age Distribution

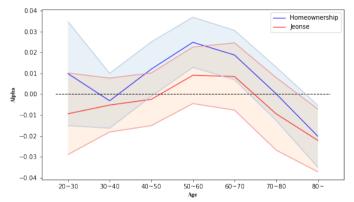
Estimated γ_Q, σ_Q on FAR



Crowding Out Effects - FAR

Financial Asset Ratio (FAR) = FA/W

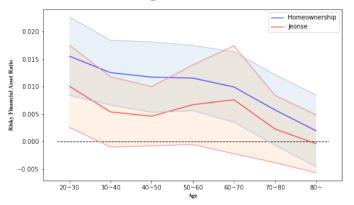
Estimated γ_Q, σ_Q on Alpha



Crowding Out Effects - Alpha

Risky Financial Asset Ratio over Financial Asset (Alpha) = RFA/FA

Estimated γ_Q, σ_Q on RFAR



Crowding Out Effects - RFAR

Risky Financial Asset Ratio (RFAR) = RFA/W

Conclusion

• Conclusion

- \rightarrow Exploiting unique contract structure of housing tenure called *Jeonse*, I aim to study two potential channels of the crowding out effect.
- 1. Liquidity constraint does exist as a separate channel, and households with high net wealth-to-income ratio or old households seem not affected by it.
- 2. House price risk channel sustains though households have high net wealth-to-income ratio.
- Future Plan
- \rightarrow Model estimation and simulation & Policy Experiments

Appendix

Liquidity Constraint Channel from Jeonse

• Korean Housing Market

- Average Jeonse deposit ratio: 0.645
- Downpayment for Jeonse Mortgage: 0.416
- Downpayment for Homepurchase Mortgage: 0.482

Liquidity Constraint Channel from Jeonse

• Korean Housing Market

- Average Jeonse deposit ratio: 0.645
- Downpayment for Jeonse Mortgage: 0.416
- Downpayment for Homepurchase Mortgage: 0.482
- If house is valued at \$100,
- Jeonse requires \$26.7
- Housing Purchase requires \$48.2

▶ Return

- Rent for 2 years
- Tenant $\rightarrow \tau P_H H \rightarrow Landlord$

- Rent for 2 years
- Tenant $\rightarrow \tau P_H H \rightarrow Landlord$
- Rent: $\tau P_H H = 0.035 \times 2 \times \$100,000 = \$7,000$

- Rent for 2 years
- Tenant $\rightarrow \tau P_H H \rightarrow Landlord$
- Rent: $\tau P_H H = 0.035 \times 2 \times \$100,000 = \$7,000$
- \rightarrow Total = \$7,000.

- Rent for 2 years
- Tenant $\rightarrow \tau P_H H \rightarrow Landlord$
- Rent: $\tau P_H H = 0.035 \times 2 \times \$100,000 = \$7,000$
- \rightarrow Total = \$7,000.
 - Jeonse Contract for 2 years
 - Tenant $\rightarrow \phi_J \overline{J} P_a^H H + (1 \delta_J) \overline{J} P_a^H H (R_M 1) + \delta_J \overline{J} P_a^H H (R_f 1) \rightarrow \text{Landlord} \& \text{Etc}$

- Rent for 2 years
- Tenant $\rightarrow \tau P_H H \rightarrow Landlord$
- Rent: $\tau P_H H = 0.035 \times 2 \times \$100,000 = \$7,000$
- \rightarrow Total = \$7,000.
 - Jeonse Contract for 2 years
 - Tenant $\rightarrow \phi_J \overline{J} P_a^H H + (1 \delta_J) \overline{J} P_a^H H (R_M 1) + \delta_J \overline{J} P_a^H H (R_f 1) \rightarrow \text{Landlord} \& \text{Etc}$
- 1. Contract Fee: $\phi_J J P_a^H H =$ \$193.5

- Rent for 2 years
- Tenant $\rightarrow \tau P_H H \rightarrow Landlord$
- Rent: $\tau P_H H = 0.035 \times 2 \times \$100,000 = \$7,000$
- \rightarrow Total = \$7,000.
 - Jeonse Contract for 2 years
 - Tenant $\rightarrow \phi_J \overline{J} P_a^H H + (1 \delta_J) \overline{J} P_a^H H (R_M 1) + \delta_J \overline{J} P_a^H H (R_f 1) \rightarrow \text{Landlord} \& \text{Etc}$
- 1. Contract Fee: $\phi_J \bar{J} P_a^H H =$ \$193.5
- 2. Mortgage Interest: $(1 \delta_J)JP_a^H H(R_M 1) =$ \$3,624.0

- Rent for 2 years
- Tenant $\rightarrow \tau P_H H \rightarrow Landlord$
- Rent: $\tau P_H H = 0.035 \times 2 \times \$100,000 = \$7,000$
- \rightarrow Total = \$7,000.
 - Jeonse Contract for 2 years
 - Tenant $\rightarrow \phi_J \overline{J} P_a^H H + (1 \delta_J) \overline{J} P_a^H H (R_M 1) + \delta_J \overline{J} P_a^H H (R_f 1) \rightarrow \text{Landlord} \& \text{Etc}$
- 1. Contract Fee: $\phi_J \bar{J} P_a^H H =$ \$193.5
- 2. Mortgage Interest: $(1 \delta_J)JP_a^H H(R_M 1) =$ \$3,624.0
- 3. Opportunity Cost: $\delta_J J P_a^H H(R_f 1) =$ \$1,248.46

- Rent for 2 years
- Tenant $\rightarrow \tau P_H H \rightarrow Landlord$
- Rent: $\tau P_H H = 0.035 \times 2 \times \$100,000 = \$7,000$
- \rightarrow Total = \$7,000.
 - Jeonse Contract for 2 years
 - Tenant $\rightarrow \phi_J \overline{J} P_a^H H + (1 \delta_J) \overline{J} P_a^H H (R_M 1) + \delta_J \overline{J} P_a^H H (R_f 1) \rightarrow \text{Landlord} \& \text{Etc}$
- 1. Contract Fee: $\phi_J J P_a^H H =$ \$193.5
- 2. Mortgage Interest: $(1 \delta_J)JP_a^H H(R_M 1) =$ \$3,624.0
- 3. Opportunity Cost: $\delta_J \bar{J} P_a^H H(R_f 1) =$ \$1,248.46
- \rightarrow Total = \$5,065.96.

Jeonse is cheaper than Rent as long as HH can pay the downpayment (= \$26,832).

- Jeonse
- Downpayment: \$26,832
- Mortgage Interest: \$253

- Jeonse
- Downpayment: \$26,832
- Mortgage Interest: \$253
- Purchase
- Downpayment: \$48,200
- Mortgage Interest: \$392

- Jeonse
- Downpayment: \$26,832
- Mortgage Interest: \$253
- Purchase
- Downpayment: \$48,200
- Mortgage Interest: \$392

With *Jeonse*, HH can live in a same quality of housing in a cheaper way, but they cannot get the capital gain/loss from potential housing price increase.

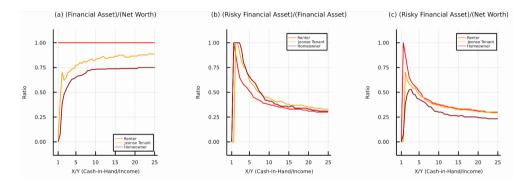
- Rent
- Receive \$7,000 rent

- Rent
- Receive \$7,000 rent
- Jeonse Contract
- Able to use \$64,500 for 2 years freely

- Rent
- Receive \$7,000 rent
- Jeonse Contract
- Able to use \$64,500 for 2 years freely

Depending on the investment opportunity set or liquidity condition, either Rent or *Jeonse* can be better to the landlord •• Return

HC ($\rho = 0.3$) - Optimal Portfolio Choice over $x_a = X_a/Y_a$ at Age 50

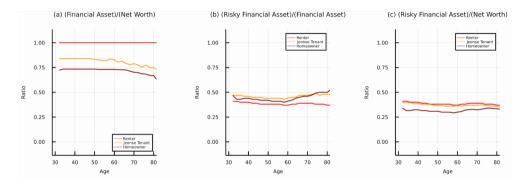


FigA. Optimal Portfolio Choices (FAR/Alpha/RFAR)

HC ($\rho = 0.3$) - Crowding Out Effect over $x_a = X_a/Y_a$ at Age 50

FigA. Crowding Out Effect (FAR/Alpha/RFAR)

HC ($\rho = 0.3$) - Optimal Portfolio Choice over Ages at $x_a = 10$



FigA. Optimal Portfolio Choices (FAR/Alpha/RFAR)

HC ($\rho = 0.3$) - Crowding Out Effect over Ages at $x_a = 10$



FigA. Crowding Out Effect (FAR/Alpha/RFAR)

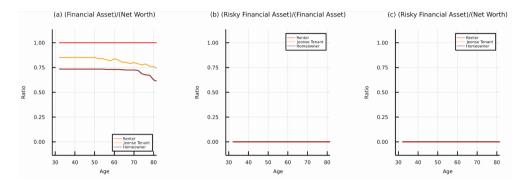
HSMP ($\gamma = 0.05$) - Optimal Portfolio Choice over $x_a = X_a/Y_a$ at Age 50

FigA. Optimal Portfolio Choices (FAR/Alpha/RFAR)

HSMP ($\gamma = 0.05$) - Crowding Out Effect over $x_a = X_a/Y_a$ at Age 50

FigA. Crowding Out Effect (FAR/Alpha/RFAR)

HSMP ($\gamma = 0.05$) - Optimal Portfolio Choice over Ages at $x_a = 10$



FigA. Optimal Portfolio Choices (FAR/Alpha/RFAR)

HSMP ($\gamma = 0.05$) - Crowding Out Effect over Ages at $x_a = 10$

FigA. Crowding Out Effect (FAR/Alpha/RFAR)

References

- Ahn, Taehyun, Chung Gu Chee and Seonghoon Kim. 2021. "The Evolution of Income Risk and Consumption Insurance in South Korea over the Last Two Decades*." *Oxford Bulletin of Economics and Statistics* 83.
- Boar, Corina, Denis Gorea and Virgiliu Midrigan. 2022. "Liquidity Constraints in the U.S. Housing Market." *The Review of Economic Studies* 89.
- Cocco, João F. 2005. "Portfolio choice in the presence of housing." *Review of Financial Studies* 18.
- Faig, Miquel and Pauline Shum. 2002. "Portfolio choice in the presence of personal illiquid projects." *Journal of Finance* 57.
- Flavin, Marjorie and Takashi Yamashita. 2002. "Owner-occupied housing and the composition of the household portfolio." *American Economic Review* 92.
- Grossman, Sanford J. and Guy Laroque. 1990. "Asset Pricing and Optimal Portfolio Choice in the Presence of Illiquid Durable Consumption Goods." *Econometrica* 58.

Merton, Robert C. 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case." *The Review of Economics and Statistics* 51.

Vestman, Roine. 2019. "Limited stock market participation among renters and homeowners." *Review of Financial Studies* 32.

Yao, Rui and Harold H. Zhang. 2005. "Optimal consumption and portfolio choices with risky housing and borrowing constraints.".